Sunday, 3 September 2023

Distributed Unsupervised Deep Learning

Our recently published paper, available here in open access mode, presents a deep learning method for network resource orchestration. There are a few features that make this method interesting.

It is build on a distributed multi-agent architecture.

It is based on Unsupervised Deep Learning, not a common feature for resource orchestration methods. The user essentially defines an objective and the agents try to accomplish it by training and then running deep neural networks and without further interaction with the user.

The agents share among them the most efficient models making the training process more efficient.

The neural networks are trained using genetic algorithms which is an innovative feature for unsupervised learning systems and speeds up the training procedure. It is actually interesting to use one system in order to train another system without explicitly describing the training process.

We are able to test this method by running simulations in large scale topologies. For this we have built an efficient network simulator resealed as an open source project.


https://doi.org/10.1109/ACCESS.2023.3308492




 

No comments:

Post a Comment